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Linear stability analysis is carried out to examine the effect of a depth-dependent modulus on the stability of
creeping flow of a Newtonian fluid past an incompressible and impermeable linear elastic solid. Two different
systems are considered: �i� Couette flow past a solid with a continuously varying modulus, and �ii� Couette
flow past two adjacent solids with different thicknesses and moduli. For the first system, we find that between
two configurations having the same average modulus, the more stable configuration is the one that has the
higher modulus at the interface. In the case of two different configurations having the same interfacial modulus
and the same average modulus, the more stable configuration is the one that has the higher modulus right below
the interface. For the second system, we find that stability depends in a non-monotonic way on the modulus
ratio �top modulus to bottom modulus� of the two solids. If the thickness of the top solid is less than a critical
value, then increasing the modulus ratio initially causes the system to be less stable. Since this critical thickness
decreases as the modulus ratio increases, increasing the modulus ratio beyond a certain point causes the system
to be more stable. An analysis of the solid-solid interfacial boundary conditions suggests that the relationship
between the stiffness of the top solid and the stability of the system is due to a jump in the base-state
displacement gradient at the interface which creates a net perturbation displacement.
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I. INTRODUCTION

Fluid flows near deformable solids are encountered in nu-
merous applications including microfluidic devices �1,2�,
membrane separations �3�, coating processes �4�, oil recov-
ery �5�, and flow of biological fluids �6,7�. The physics of
such flows can be difficult to analyze due to the coupling
between the fluid and the solid dynamics. A particularly im-
portant manifestation of this coupling is the ability of the
fluid flow to amplify waves at the solid-fluid interface. This
instability can happen even when the fluid lacks inertia, and
has been a topic of much recent study due to its potential
application in mixing, complex fluid rheology, and drag re-
duction �8–21�. Stability analyses of fluid flows past deform-
able solids typically assume that the shear modulus of the
solid is constant. Yet in practice, the solids may have a
modulus that varies with depth, either naturally or by design.
For example, vertical gradients in the modulus can form dur-
ing curing of a polymer gel, or it may be desirable to use a
high-modulus protective layer to prevent damage �22�. The
purpose of this work is to investigate how a depth-dependent
modulus affects the ability of fluid flow to amplify waves at
the interface between the fluid and a deformable solid.

The stability of creeping Couette flow past a linear vis-
coelastic solid was studied by Kumaran et al. �8�. They
found that an instability occurs when the dimensionless
strain G=�V /RE is larger than a critical value. Here, � and
R are the fluid viscosity and thickness, respectively, V is the
speed of the top plate, and E is the shear modulus of the
solid. The critical strain depends on the interfacial tension,
the solid-to-fluid viscosity ratio, and the solid-to-fluid thick-

ness ratio. It is important to note that no instability would
exist if the solid was rigid, so the instability is a consequence
of the deformability of the solid-fluid interface. Gkanis and
Kumar studied the stability of creeping Couette flow past a
neo-Hookean solid and showed that the results agree with
those for a linear elastic solid if the solid-to-fluid thickness
ratio is sufficiently large �14�. The difference in the critical
conditions for small values of that ratio was attributed to the
jump in the first normal stress difference across the interface,
which is proportional to G2 �17�. Further studies have exam-
ined the roles of inertia �18–21�, fluid elasticity �15,13�, and
pressure-driven flow �9,17,19,20�. In all of these studies, the
shear modulus of the solid is assumed to be constant.

Muralikrishnan and Kumaran �10,11� conducted experi-
ments with a rheometer to validate the theoretical predictions
of Kumaran et al. �8�, and observed a sharp transition in the
apparent viscosity at a critical strain. Although the experi-
mental and theoretical critical strains were found to be of the
same order of magnitude, the theoretical values were consis-
tently smaller. Eggert and Kumar performed similar experi-
ments using a different fluid-gel system to probe the nonlin-
ear aspects of the instability, observing oscillations and
hysteresis in the apparent viscosity �16�. Their results sug-
gested that the instability is subcritical, which is consistent
with predictions from a weakly nonlinear stability analysis
�12�. Also noteworthy are earlier experiments by Krindel and
Silberberg involving flow in a gel-lined tube, where a tran-
sition to turbulence was observed at a Reynolds number
lower than that for a rigid-walled tube �23�.

Many studies have been conducted to explore how de-
formable solid boundaries can be used to stabilize high-
Reynolds-number boundary-layer flows �24,25�. Although
the solid is typically modeled as a membrane or as a linear
viscoelastic solid of finite thickness and constant modulus,
some studies have considered multilayer solids �26,27�. The-*FAX: �612� 626 7246. Email address: kumar@cems.umn.edu
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oretical predictions indicate that a proper choice of the physi-
cal properties of the solid layers can significantly reduce the
growth rates of boundary-layer instability modes, as well as
those of flow-induced instability modes that arise from am-
plification of waves at the solid-fluid interface.

Although the effect of a depth-dependent modulus on the
stability of boundary-layer flows past deformable solids has
been examined, its effect on the destabilization of creeping
flows has not, and it is this limit that we explore in the
present work. To do so, we consider two model systems in-
volving creeping Couette flow of a Newtonian fluid. The first
consists of flow past a linear elastic solid with a modulus that
varies continuously with depth, and the second consists of
flow past two incompressible and impermeable linear elastic
solids with different thicknesses and moduli. The governing
equations are given in Sec. II, base states are calculated in
Sec. III, linear stability analysis is described in Sec. IV, re-
sults are reported in Sec. V, and conclusions are given in Sec.
VI.

II. GOVERNING EQUATIONS

We consider an incompressible Newtonian fluid residing
on top of an incompressible and impermeable linear elastic
solid, where the entire configuration resides between two
parallel rigid plates. The solid is adhered to the bottom sta-
tionary plate whereas the top plate moves with a constant
velocity vx=Vw. The solid occupies the region −HR�z�0
and the fluid occupies the region 0�z�R. For the system
with two solids having different thicknesses and moduli, the
top solid occupies the region −H1R�z�0 and the bottom
solid the region −HR�z�−H1R, where H�H1. In the base
state the interface is flat and located at z=0. As have prior
works �e.g., �8,14,17��, we focus our efforts here on two-
dimensional systems and suppress any variations in the y
direction.

The motion of each medium is governed by a momentum
balance and an incompressibility constraint. In the absence
of inertia these equations take the form:

� · � = 0 , �1�

� · � = 0 , �2�

where � is the Cauchy stress tensor in the fluid or the solid
and � is the velocity vector in the fluid or the displacement
vector in the solid. Henceforth, � and � are used to denote
the Cauchy stress tensor in the fluid and the solid, respec-
tively. For the system with a continuously varying modulus,
� is equal to

� = − Ps + �Eo + Ê�z����u + ��u�T� , �3�

and it is equal to

� = − Ps + Ej��u + ��u�T� �4�

for the system with two solids having different thicknesses
and moduli, where j=1,2. Here, the subscript 1 is for the top
layer and the subscript 2 is for the bottom layer. The variable

Ps is the pressure in the solid, Eo+ Ê�z� is the modulus gra-

dient function, Ej is the modulus of each layer, and u is the
displacement vector in the solid.

The governing equations are non-dimensionalized by
scaling length with R, pressure with E* �E* is equal to Eo for
the system with a modulus gradient and it is equal to E2 for
the system with two solids�, and time with � f /E*. According
to this scaling, the inertial terms in the fluid are multiplied by
the term R=� fE

*R2 /� f
2, and by the term �sR /� f in the sol-

ids. Here, � f and � f are the fluid viscosity and density, re-
spectively, and �s is the solid density. We assume that the
fluid and the solid densities are comparable and consider the
limit of vanishing R. For the system with two solids, the
above scaling introduces a new parameter Er=E1 /E2, which
is the ratio of the moduli of the two layers. Henceforth, all
the variables are dimensionless.

The scaled governing equations are solved with the fol-
lowing boundary conditions. At the top plate we have no
slip:

v = Gi , �5�

where G=� fVw /RE* and i is the unit vector in the x direc-
tion. The parameter G can be interpreted as a dimensionless
imposed velocity or shear stress. It is also proportional to the
strain imposed in the base state on the system under study.
Note that R=Re/G, where Re=� fVwR /� f is the Reynolds
number. At the bottom plate, there is no displacement:

u = 0 . �6�

At the solid-fluid interface, continuity of velocities and
forces holds:

v =
�u

�t
, �7�

n · � = n · � , �8�

where n is the normal vector to the interface. For the system
with two solids, we apply continuity of displacements and
forces at the solid-solid interface:

u1 = u2, �9�

n · �1 = n · �2. �10�

Interfacial tension and solid viscosity have not been in-
cluded in the above equations and boundary conditions. Pre-
vious studies involving flow past deformable solids with a
constant modulus have shown that both of these quantities
have a stabilizing effect �8,14�, and we expect the same to be
true for the systems studied here.

III. BASE STATE

In the base state there are no disturbances and the inter-
face is flat. Consequently, the continuity of velocity equation
�7� becomes v=0. Under these boundary conditions, a Cou-
ette flow develops in the fluid. In the solid, the displacement
in the x direction varies linearly in the z direction for the
system with two solids. The modulus ratio changes the slope
of this variation as we go from the top layer to the bottom
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layer. For the system with a continuously varying modulus,
the displacement in the x direction depends on z in a way
determined by the depth-dependent modulus E�z�, where

E�z�= Ê�z� /Eo. That is, we have

�ux

�z
=

G

1 + E�z�
. �11�

To solve the differential equation �11�, we apply the zero-
displacement boundary condition at the bottom plate. For
both systems we study, the base-state pressure in the solids is
constant and equal to the pressure in the fluid, and uz=0 in
the base state.

An important consequence of the linearity of the govern-
ing equations is that the coupling between the base state and
perturbation quantities will occur only through the interfacial
boundary conditions, specifically the x component of the
continuity-of-velocity boundary condition �and the
continuity-of-displacement boundary condition for the sys-
tem with two solids�. The use of a nonlinear constitutive
equation �e.g., the neo-Hookean model� would introduce ad-
ditional couplings, such as one involving a first normal stress
difference that can give rise to a shortwave instability
�14,17�. Although linear elastic models are, strictly speaking,
valid only for small displacement gradients, G�1, they have
been shown to provide reasonable predictions for Couette
flow past a deformable solid of uniform modulus even when
G�1 �14�. We expect that this will also hold for flow past a
solid with a depth-dependent modulus.

IV. LINEAR STABILITY ANALYSIS

A linear stability analysis is carried out to determine the
stability of the base state to small-amplitude disturbances. In
Ref. �8�, one can find �i� the governing equations for the
disturbances in the fluid with the boundary conditions at the
top plate, �ii� the boundary conditions for the disturbances at
the solid-fluid interface for a solid having a constant modu-
lus, �iii� the governing equations for the disturbances in the
solids when each solid has a constant modulus, and �iv� the
boundary conditions for the disturbances at the bottom plate.
Thus, we do not repeat these here.

Here, we give the solid-solid interfacial boundary condi-
tions for the disturbances for the system with two solids, and
the governing equations for the disturbances in the solid with
the solid-fluid interfacial boundary conditions for the system
with a continuously varying modulus. The interfacial bound-
ary conditions at the solid-solid interface are Taylor ex-
panded around a flat interface, i.e., around z=−H1:

ũz1 = ũz2, �12�

G

Er
ũz1 + ũx1 = Gũz2 + ũx2, �13�

Er� �ũx1

�z
+ ikũz1� =

�ũx2

�z
+ ikũz2, �14�

− P̃s2 + 2
�ũz2

�z
= − P̃s1 + 2Er

�ũz1

�z
, �15�

where k is the real-valued wave number and the tilde indi-
cates the complex-valued amplitude of the disturbance,
which depends on depth. Equations �12� and �13� represent
continuity of displacement in the z and x directions, respec-
tively, and Eqs. �14� and �15� represent continuity of forces
in the tangential and in the normal directions, respectively.

The governing equations for the disturbances in the solid
with a continuously varying modulus are

− ikP̃s +
�E�z�

�z
�ikũz +

�ũx

�z
� + �1 + E�z���− k2ũx +

�2ũx

�z2 � = 0,

�16�

−
�P̃s

�z
+ 2

�E�z�
�z

�ũz

�z
+ �1 + E�z���− k2ũz +

�2ũz

�z2 � = 0,

�17�

ikũx +
�ũz

�z
= 0, �18�

where the first two equations are the momentum balances in
the x and z directions, respectively, and the third equation is
the incompressibility constraint. The solid-fluid interfacial
boundary conditions are Taylor expanded around a flat inter-
face, z=0, to become

�ũz = ṽz, �19�

�ũx = ṽx + Gũz, �20�

− P̃s + 2�1 + E�0��
�ũz

�z
= − P̃l +

�ṽz

�z
, �21�

�1 + E�0��� �ũx

�z
+ ikũz� =

�ṽx

�z
+ ikṽz, �22�

where � is the complex-valued growth rate. The first two
equations represent continuity of velocity and the second two
represent continuity of forces.

Equations �16�–�18� can be combined into a linear fourth-
order differential equation for ũz. A similar equation can be
obtained for ṽz, which has constant coefficients and can be
solved analytically. For the system with two solids, the dif-
ferential equations for ũz have constant coefficients and can
also be solved analytically. For the system with a continu-
ously varying modulus, however, the coefficients are not
constant and numerical solution of the differential equation is
required. The characteristic equation for the growth rate is
obtained using the method described in Ref. �17�. For both
systems studied, the characteristic equation is quadratic in
the growth rate. We found that one root of this equation
always has a negative real part, whereas the other root can
have a positive real part depending on the problem param-
eters. If the real part of this root is positive, the system is
unstable, if it is negative the system is stable, and if it is zero
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the system is neutrally stable. Plots of the growth rate versus
the wavenumber can be made for different values of G �with
the other parameters fixed�, and the smallest value of G for
which the maximum growth rate is zero is referred to as the
critical strain Gc, because for G�Gc the system will be un-

stable. The corresponding value of k is the critical wave
number kc. In what follows, we discuss the behavior of Gc as
a function of the other problem parameters.

V. RESULTS

A. Solid with a continuously varying modulus

In Fig. 1, we plot the critical strain Gc and the correspond-
ing critical wave number kc versus the solid-to-fluid thick-
ness ratio H for three different modulus functions: constant,
exponentially decreasing, and exponentially increasing. As
expected, the most stable case is the one where the modulus
increases with depth. If we compare Fig. 1 with Fig. 2, where
we plot the modulus for these three functions versus depth
for H=5, we observe two important features. First, when the
modulus at the bottom plate is the same, the more stable case
is the one with the largest modulus at the interface. Second,
when the modulus at the interface is the same, the more
stable case is the one with the largest modulus at the bottom
plate. However, here we are comparing Gc for systems which
do not have the same average modulus. So, to better under-
stand the importance of the value of the modulus at the in-
terface or at the bottom plate, we consider two more modulus
functions with the same average modulus and the same
modulus at the interface or at the bottom plate.

In Tables I and II, we give the critical conditions for two
different modulus functions, linear and exponential, when
these functions have the same value at the interface �Table I�
or at the bottom plate �Table II�. The thickness of the solid is

H=2, the average modulus is Ē=2, and the modulus at the
interface �Table I� or at the bottom plate �Table II� is 2. In
Fig. 3 we plot these functions versus depth. By comparing
Gc for the cases with the same modulus at the bottom plate,
we see that the more stable one is that with the exponential
variation in the modulus, which also has the higher modulus
at the interface. Furthermore, in Table III we give the critical
strain and the modulus at the two ends for an exponential
modulus function of the form E�z�=1+a1 exp�a2z�, where
we choose different values for the parameters a1 and a2. The

TABLE I. Critical conditions for the linear and exponential
modulus functions with the same average modulus and same modu-
lus at the interface.

Modulus function Gc kc E�−H�

Linear 5.722 0.921 6.000

Exponential 5.404 0.957 7.711

TABLE II. Critical conditions for the linear and exponential
modulus functions with the same average modulus and same modu-
lus at the bottom plate.

Modulus function Gc kc E�0�

Linear 6.844 0.836 6.000

Exponential 6.893 0.841 7.711

FIG. 1. Plot of �a� Gc and �b� kc versus H for three different
modulus functions: constant, exponentially decreasing, and expo-
nentially increasing.

FIG. 2. Modulus of the three functions of Fig. 1 versus depth for
H=5.
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most stable case is the one where the modulus at the inter-
face is highest, despite the fact that this is the one that also
has the lowest modulus at the bottom plate. Therefore, from
these observations we conclude that the value of the modulus
at the interface is the one that determines stability: the higher
it is, the more stable the system is.

When the modulus at the interface is the same �Table I�
and the average modulus is the same, the linear modulus
function is the more stable one even though it has a lower
modulus at the bottom plate. This is because this function

has a higher modulus right below the interface, whereas the
exponential one has a higher modulus closer to the bottom
plate �Fig. 3�. To support this idea, we considered different
systems where the point at which the two modulus functions
have the same value ��1.5 units from the interface� is closer
to the interface, and we found that even if that point is very
close to the interface �the smallest distance from the interface
was 0.01 units, when the solid thickness was 2 units�, the
system which has the higher modulus right below the inter-
face is the more stable one.

It is important to emphasize that although the results in
this section are consistent with what we might expect, their
deduction from existing results on systems where the modu-
lus is constant is far from obvious. This is due to the more
complicated mathematical problem that arises when the
modulus varies with depth, which involves the numerical
solution of an ordinary differential equation with noncon-
stant coefficients �cf. Sec. IV�.

B. Two solids with different thicknesses and moduli

In Fig. 4, we plot Gc versus the thickness of the top layer,
H1, for different values of the modulus ratio Er �=E1 /E2�.
The total thickness is H=30. The first thing we notice is that
if the top layer is stiffer than the bottom layer, Er�1, Gc

TABLE III. Critical strain and modulus values at interface and
bottom plate for different exponential functions having the same
average modulus.

Gc E�0� E�−H�

3.416 2.400 1.685

3.381 2.200 1.824

3.332 2.000 2.000

3.301 1.900 2.107

3.222 1.700 2.376

FIG. 3. Modulus versus depth for the case where the modulus at
the �a� interface or �b� bottom plate is the same. Here, H=2 and

Ē=2.

FIG. 4. Plot of Gc versus H1, for different values of Er when
H=30. In �b� we have focused in on the region 0.1�H1�1.
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increases with increasing H1. On the other hand, if the top
layer is softer than the bottom layer, Er�1, then Gc de-
creases with increasing H1. The interesting things occur
when H1�1 �Fig. 4�b��, where we see that by increasing the
stiffness of the top layer, we decrease Gc. Thus, the stiffer the
top layer is, the easier it is to destabilize the system. More-
over, in Fig. 4�b� we observe that the lines which correspond
to different values of Er cross the line that corresponds to a
single layer, Er=1. This means that there is a critical thick-
ness of the top layer, H1c, such that Gc for a system with
Er�1 is equal to Gc for a single layer system �Er=1�. Re-
ferring back to Fig. 4, we see that for H1�H1c, a top layer
stiffer �softer� than the bottom layer makes the system less
�more� stable, and for H1�H1c, a stiffer �softer� top layer
makes the system more �less� stable. It is helpful to note here
that according to the scaling used, the dimensionless modu-
lus of the bottom layer is 1; similarly, the dimensionless
modulus of a system with a single layer of constant modulus
is also 1.

The critical thickness of the top layer decreases monotoni-
cally with Er, as is shown in Fig. 5. In Fig. 6, we plot Gc

versus Er for two different values of H1, when the total thick-
ness is H=30. We observe that Gc goes through a minimum
when H1=0.7 and it decreases monotonically when H1=0.1.
This behavior can be explained with the help of Figs. 4 and
5. From Fig. 5, we have that H1c�H1 for all the values of Er
examined in this work when H1=0.1. Therefore, we have a
top layer with a thickness smaller than the critical thickness
and the stiffer we make that layer, the easier it is to destabi-
lize the system. Of course, if Er becomes sufficiently large,
H1c will eventually drop below H1=0.1, and increasing Er
further will then begin to increase Gc. We also note that
according to the discussion of Fig. 4�b�, Gc is larger when
Er�1 �and H1c�H1� than when Er=1. The reverse holds for
Er�1. This explains why Gc for 0.1�Er�1 �1�Er�3� is
larger �smaller� than Gc for a single layer, Er=1.

When H1=0.7, we find that the critical thickness
H1c=0.7 when Er�0.8, as is shown in Fig. 5. According to
this figure, if Er�0.8 then H1c�H1 and the reverse holds
when Er�0.8. Therefore, for Er�0.8 we have a soft top
layer with a thickness smaller than the critical thickness and
hence Gc is larger than it would be when Er=1. However, Gc
decreases as we stiffen the top layer �Fig. 4�b��. For
0.8�Er�1, H1�H1c, and because Er�1, Gc is smaller than
its value when Er=1. Nevertheless, because now H1�H1c,
Gc increases as we stiffen the top layer. This means that Gc
has a minimum when Er=0.8. For Er�1 we observe behav-
ior consistent with Fig. 4 when Er�1 and H1�H1c, i.e., Gc
increases with Er.

We next present the critical conditions for Couette flow
past a linear elastic solid with a modulus function of the form
E�z�=a1+a2 arctan�a3z+a4�, where the values of the ai

�i=1, . . . ,4� control the steepness of the function and its val-
ues at the two ends. The values of the ai were chosen to
make the arctan function look like the step function seen in
the case where there are two solids of different moduli. The
values of Gc and kc reported for the arctan function did not
change much upon increasing the steepness of that function.
Our motivation for studying this function was to check
whether we could reproduce some of the results reported in
this section using a single solid with a continuously varying
modulus. In Table IV we give the critical conditions for dif-
ferent values of H1. The total thickness is H=30 and the
modulus ratio is Er=2. There is a good agreement for large
values of H1, and for both systems Gc decreases as H1 de-
creases. Nevertheless, for the system of a single solid with a
modulus gradient, Gc is not smaller than the critical imposed
velocity for a single layer with constant modulus
�Gc=0.107 41�, although Gc is smaller for the system with
two solids. We believe that some insight into this can be

TABLE IV. Comparison of the critical conditions for the two
systems

Continuously varying modulus Two solids

H1 Gc kc Gc kc

0.1 0.108 0.054 0.104 0.055

0.5 0.112 0.053 0.108 0.053

14.0 0.169 0.055 0.168 0.055

FIG. 5. The critical thickness of the top layer, H1c, versus Er

when H=30. The dashed lines indicate the value of Er �Er�0.8� for
which H1c=0.7.

FIG. 6. Plot of Gc versus Er for H1=0.1 and H1=0.7 when H
=30. The first vertical dashed line indicates the point where Er

=0.8 and the second line the point where Er=1.
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gained by examining the solid-solid interfacial boundary
conditions. Equation �13� shows that the jump in the dis-
placement gradient in the base state produces a net perturba-
tion displacement in the x direction. That is, Eq. �13� can be
written as

ũx1 − ũx2 = �� �

�z
�ux2

o − ux1
o ��

z=−H1

�ũz2 = �G − G/Er�ũz2,

�23�

where the superscript o denotes the base state. A nonzero
difference of ũx1− ũx2 indicates a net perturbation displace-
ment in the x direction at the solid-solid interface. If we set
the right hand side of Eq. �23� to zero:

ũx1 − ũx2 = 0, �24�

and use this to calculate the critical conditions, we recover
the results we obtain with the arctan function. Thus, the net
perturbation displacement at the interface appears to be re-
sponsible for the differences we observe in Table III.

Further consideration of Eq. �23� can also yield insight
into the relationship between stiffness and stability observed
in Fig. 4. The term �G−G /Er� in Eq. �23� is positive when
Er�1 �stiffer top layer� and negative when Er�1 �stiffer
bottom layer�. We adopt the convention that the magnitude
and the sign of the net perturbation displacement are deter-
mined by the term �G−G /Er�; when that term is positive
�negative�, Eq. �23� produces a net perturbation displacement
to the right �left�. In our analysis we also consider continuity
of velocity, Eq. �20�, at the solid-fluid interface, which indi-
cates that a jump in the velocity gradient in the base state
produces a net perturbation flow. �In the base state, the ve-
locity in the solid is zero, but it is a function of position in
the fluid.� Equation �20� is �ũx /�t− ṽx=vx

o�ũz1�, and after
Taylor expanding around z=0, it becomes �ũx /�t− ṽx
= 	��vx

o /�z�	z=0ũz1=Gũz1. So the net perturbation flow is pro-
portional to G, a positive parameter, and hence according to
the previous convention, that flow is to the right. To summa-
rize, the solid-fluid interface is shifted to the right and the
solid-solid interface is shifted to the right or left according to
the sign of the term �G−G /Er�. Moreover, it was noted ear-
lier that the modulus of the bottom layer is equal to the
modulus of the system with a single layer, and from prior
work �8,17� it is known that the motion of the solid-fluid
interface is the one that drives the instability. In this analysis,
we will consider only the effect of the thickness of the top
layer on the stability of the system.

In the case where the modulus ratio is less than unity, the
solid-fluid interface is shifted to the right and the solid-solid
interface is shifted to the left. Because these two interfaces
are moving in the opposite directions, the motion of the
solid-solid interface may counterbalance the destabilizing
motion of the solid-fluid interface, making the system more
stable than that of a single layer. This corresponds to what
happens when H1�H1c �Fig. 4�b� when Er�1�. Neverthe-
less, as the thickness of the top layer increases such that
H1�H1c, these two interfaces move farther away one an-
other so that the motion of one interface does not affect the
motion of the other. Moreover, because the top layer has a

lower modulus, Er�1, its resistance to deformation is
smaller than that of the bottom layer and hence it is easier to
destabilize this system than one having a single layer �Fig.
4�a� when Er�1 and H1�H1c�. Similar reasoning applies to
the case of Er�1. Now, both interfaces are shifted to the
right and hence the destabilizing motion of the solid-fluid
interface is reinforced by the motion of the solid-solid inter-
face. The system is less stable than the system of a single
layer �Fig. 4�b� when Er�1�. On the other hand, when
H1�H1c the two interfaces are far away one from the other
so that the motion of one interface does not affect the motion
of the other. Furthermore, the solid-fluid interface has to de-
form the stiffer top layer, something that makes the system
more stable than a system consisting of a single layer �Fig.
4�a� when Er�1 and H1�H1c�.

In the case where we keep the thickness of the top layer
constant and we decrease its modulus, the stress in the solid
is smaller for a given strain. This means that the stress ex-
erted on one interface due to the motion of the other interface
is now smaller. Therefore, it would appear that the solid-
solid interface has a smaller stabilizing effect �if Er�1� or a
smaller destabilizing effect �if Er�1� than it has for a larger
modulus. But in this case the situation is more complex be-
cause the net perturbation displacement is a function of the
modulus �it is proportional to G−G /Er�, and this will also
affect the magnitude of the stress on the solid-fluid interface.
Thus, changes in the net perturbation displacement might
compensate for changes in the modulus, and this may give
rise to the observed dependence of H1c on Er �Fig. 5� and Gc
on Er �Fig. 4�.

VI. CONCLUSIONS

In this work, we carried out a linear stability analysis for
two systems involving creeping Couette flow of a Newtonian
fluid past a linear elastic solid with a depth-dependent modu-
lus. For the system where the modulus varies continuously
with depth, we found that stability is governed by the value
of the modulus at the interface; the greater it is, the more
stable the system is. In the case of different configurations
having the same interfacial modulus and the same average
modulus, the more stable configuration is the one that has the
higher modulus right below the interface. For the system
with two solids having different thicknesses and moduli, the
critical strain required for instability is a nonmonotonic func-
tion of the modulus ratio. The critical strain required for
instability decreases as the top layer becomes stiffer, pro-
vided that its thickness is below a critical value. Since this
critical value decreases as the modulus ratio increases, mak-
ing the top layer too stiff eventually causes the critical strain
to increase. Analysis of the solid-solid interfacial boundary
conditions suggests that this behavior is due to a net pertur-
bation displacement at the interface which arises due to a
jump in the base-state displacement gradient across the inter-
face. We note that our results should also be valid for
pressure-driven flows, as the form of the linearized equations
will be the same with only a different effective value of G.

The results presented in this work significantly extend
prior work on the stability of creeping flows past deformable
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solids by elucidating the effect of a depth-dependent modu-
lus. As most soft elastic solids will have a modulus gradient,
our results may be helpful in interpreting experimental data.
Although we are not aware of experimental studies with
which we can quantitatively compare our results, it is in-
triguing to reconsider the experimental observations on low-
Reynolds-number flow past polymer gels �10,11�. It was
found that although linear stability analysis using a linear
viscoelastic model with constant modulus predicts critical
strains of the same order of magnitude as the experimental
values, the theoretical values are consistently smaller. The
results of the present work suggest that the discrepancy could
be due to a depth-dependent modulus. As polymer gels cure,
they can develop a modulus gradient through their depth due
to differences in cross-link density, where the modulus is
highest near the top surface �22�. It is possible that the gels

used in the experiments also had a higher modulus near the
surface, although no measurements of modulus versus depth
were made. If so, then our results suggest that the observed
values of the critical strain would be expected to be larger
than those predicted by a constant-modulus model.
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